

Friday 13 January 2012 – Morning

AS GCE MATHEMATICS

4721 Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer book 4721
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

1 Express
$$\frac{15 + \sqrt{3}}{3 - \sqrt{3}}$$
 in the form $a + b\sqrt{3}$, where a and b are integers

The graph of y = f(x) for $-2 \le x \le 2$ is shown above.

- (i) Sketch the graph of y = f(-x) for $-2 \le x \le 2$. [2]
- (ii) Sketch the graph of y = f(x) + 2 for $-2 \le x \le 2$. [2]

Given that 3

2

$$5x^2 + px - 8 = q(x - 1)^2 + r$$

for all values of x, find the values of the constants p, q and r. [4]

4 Evaluate

(i) find f'(x),

(i)
$$3^{-2}$$
, [1]

(ii)
$$16^{\frac{3}{4}}$$
, [2]

(iii)
$$\frac{\sqrt{200}}{\sqrt{8}}$$
. [2]

Find the real roots of the equation $\frac{3}{v^4} - \frac{10}{v^2} - 8 = 0.$ 5 [5]

- Given that $f(x) = \frac{4}{x} 3x + 2$, 6
 - (ii) find $f''\left(\frac{1}{2}\right)$.
- A curve has equation $y = (x + 2)(x^2 3x + 5)$.
 - (i) Find the coordinates of the minimum point, justifying that it is a minimum. [8]
 - (ii) Calculate the discriminant of $x^2 3x + 5$. [2]
 - (iii) Explain why $(x+2)(x^2-3x+5)$ is always positive for x > -2. [2]

4721 Jan12

7

[4]

[4]

[3]

- 8 The line *l* has gradient -2 and passes through the point A(3, 5). *B* is a point on the line *l* such that the distance *AB* is $6\sqrt{5}$. Find the coordinates of each of the possible points *B*. [6]
- 9 (i) Sketch the curve $y = 12 x x^2$, giving the coordinates of all intercepts with the axes. [5]
 - (ii) Solve the inequality $12 x x^2 > 0$. [2]

(iii) Find the coordinates of the points of intersection of the curve $y = 12 - x - x^2$ and the line 3x + y = 4. [5]

- 10 A circle has centre C(-2, 4) and radius 5.
 - (i) Find the equation of the circle, giving your answer in the form $x^2 + y^2 + ax + by + c = 0$. [3]
 - (ii) Show that the tangent to the circle at the point P(-5, 8) has equation 3x 4y + 47 = 0. [5]
 - (iii) Verify that the point T(3, 14) lies on this tangent. [1]
 - (iv) Find the area of the triangle *CPT*. [4]

Q	Question		Answer	Marks	Guidance		
1			$\frac{15 + \sqrt{3}}{3 - \sqrt{3}} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}}$	M1	Multiply top and bottom by $\pm(3 + \sqrt{3})$	SC If A0A0A0 scored, both parts correct but unsimplified B1 i.e. $\frac{45+15\sqrt{3}+3\sqrt{3}+3}{9+3\sqrt{3}-3\sqrt{3}-3}$ o.e.	
			$=\frac{48+18\sqrt{3}}{9-3}$	A1	Numerator correct and simplified	<u>Alternative method:</u> Equates expression to $a + b\sqrt{3}$ and forms simultaneous equations in <i>a</i> and <i>b</i> M1	
				A1	Denominator correct and simplified to 6	Correct method to solve simultaneous equations M1 a = 8 found A1	
			$=8+3\sqrt{3}$	[4]		h = 3 found A1	
2	(i)		y 2 1 1 -2 x	M1 A1 [2]	Reflection of given graph in either axis Correct reflection in <i>y</i> -axis	Clear intention to show (-2, 1), (0,0), (2,2) by numbers, dashes or co- ordinates A0 If significantly short or long	
2	(ii)		-2 y y y y y y y y y y y y y y y y y y y	M1 A1	Translation of given graph vertically (up or down) Correct translation of two units vertically	Clear intention to show (-2, 4), (0,2), (2,3) by numbers, dashes or co- ordinates A0 If significantly short or long	

⁴⁷²¹

	Question		Answer	Marks	Guidance	2
3			$5x^2 + px - 8 = 5(x - 1)^2 + r$	B1	q = 5 (may be embedded on RHS)	
			$=5(x^2-2x+1)+r$			
			$=5x^2-10x+5+r$	B1	p = -10	
			p = -10	M1	2	
			/15	111	$-8 = \pm q + r \text{ or } \frac{-p^2}{20} - 8 = r$	
				A1 [4]	r = -13	Allow from $p = 10$
				[*]		
4	(i))	$\frac{1}{2}$	B1		
			9	[1]		
4	(ii	i)	$\left(\sqrt[4]{16}\right)^3$	M1	Interprets the power $\frac{3}{4}$ correctly	$(\sqrt[4]{16})^3$ or $(\sqrt[4]{16^3})$ or $(\sqrt[4]{16^3})$ or $(163)^{\frac{1}{2}}$
			= 8	A1 [2]	± 8 is A0	$(10^{-7})^{-7}$ or $(10^{-7})^4$
4	(ii	ii)	$5\sqrt{8} \div \sqrt{8}$	M1	$\sqrt{100} \sqrt{2} \div \sqrt{4} \sqrt{2}$ or $\sqrt{\frac{200}{8}}$ or	
			= 5	A1 [2]	$\sqrt{25} \sqrt{8} \div \sqrt{8}$ or $\sqrt{1600} \div 8$ soi Condone ± 5	

Question	Answer	Mark	s Guidanc	e
5	$k = \frac{1}{y^2}$	M1*	Use a correct substitution or pair of substitutions to obtain a quadratic or factorise into 2 brackets each containing $\frac{1}{y^2}$	No marks if straight to quadratic formula to get $y = \frac{2}{3}$, $y = 4^{\circ}$ unless correct substitution applied later i.e. reciprocal and square root
	$3k^{2} - 10k - 8 = 0$ (3k + 2)(k - 4) = 0 $k = -\frac{2}{3} \text{ or } k = 4$ $y^{2} = -\frac{3}{2} \text{ or } y^{2} = \frac{1}{4}$ $y = \pm \frac{1}{2}$	M1de A1 M1 A1	 Correct method to solve a quadratic k = 4 from correct method. If other root stated it must be correct. Attempt to reciprocal and square root to obtain y (either term) No other roots given. Must be from k = 4 from correct method. 	No marks if quadratic found from incorrect substitution SC If M0 Spotted solutions www B1 each Justifies 2 solutions exactly B3
	Alternative method below: $3-10y^2 - 8y^4 = 0$ $k = y^2$ $8k^2 + 10k - 3 = 0$ (4k-1)(2k+3) = 0 $k = \frac{1}{4}$ or $k = -\frac{3}{2}$ $y = \pm \frac{1}{2}$	M1* M1 dep A1 M1 A1	$k = \frac{1}{4}$ from correct method. If other root stated it must be correct.	

Q	uestion	Answer	Marks	Guidance		
6	(i)	$f'(x) = -4x^{-2} - 3$	M1 A1	Attempt to differentiate $-4x^{-2}$	kx^{-2} or -3 correctly obtained	
			[3]	Fully confect derivative (no + c)		
6	(ii)	$f''(x) = 8x^{-3}$	M1*	Attempts to differentiate their (i)	Must involve reducing power of an x term by 1	
			A1	Correct derivative		
		$f''\left(\frac{1}{2}\right) = \frac{8}{\left(\frac{1}{2}\right)^3}$	M1dep	Substitutes $x = \frac{1}{2}$ correctly into their f''(x) e.g.	f''(x) must involve x.	
		(2)		$8\left(\frac{1}{2}\right)^{-3}$ (allow "invisible brackets")		
		= 64	A1 [4]	www		
7	(i)	$\begin{vmatrix} x^{3} - 3x^{2} + 5x + 2x^{2} - 6x + 10 \\ = x^{3} - x^{2} - x + 10 \\ dy = 2x^{2} - 2x - 1 \end{vmatrix}$	M1 M1	Attempt to multiply out brackets Attempt to differentiate their cubic Sets their $\frac{dy}{dt} = 0$	<u>Alternative for product rule</u> Attempt to use product rule M1 Expand brackets of both parts M1	
		$\frac{dx}{dx} = 3x^2 - 2x - 1$	M1*	$\frac{dx}{dx} = 0$	Then as main scheme	
		(3x+1)(x-1) = 0	M1	Correct method to solve quadratic		
		$x = -\frac{1}{3}$ or $x = 1$	A1	Correct <i>x</i> values of turning points found www	Any extra values for turning points loses all three A marks	
		$\frac{d^2 y}{dx^2} = 6x - 2$, $x = 1$ gives +ve (4)	M1dep	Valid method to establish which is min point with a conclusion	(eg by sketching positive cubic, second diff method for either of their	
		Min point at $x = 1$	A1	Correct conclusion for $x = 1$ found from correct factorisation (even if other root incorrect)	x values, y co-ords etc.)	
		y = 9 found	A1	www for (1, 9) given as minimum point (ignore other point here)	If constant incorrect in initial expansion, max 5/8	
			[8]			

Question		Answer	Marks	Guidance		
7	(ii)	$(-3)^2 - 4 \times 1 \times 5$	M1	Uses $b^2 - 4ac$	$\sqrt{b^2-4ac}$ is M0	
		= -11	A1			
			[2]			
7	(iii)		B2	Fully correct argument - no extra incorrect statements e.g. 1) Justifying the quadratic factor having no roots so only intersection with <i>x</i> -axis is at $x =$ -2 and stating it's a positive cubic 2) Sketch of positive cubic with one root at (-2, 0) and a min point at (1, 9) (f/t positive y(1) from (i))	Award B1 for either of: 1) Justifying the quadratic factor having no roots so only intersection with <i>x</i> -axis is at $x = -2$ 2) Sketch of positive cubic with one root at (-2, 0) and a min point with <i>y</i> coordinate positive or 0	
8		B lies on l so has coordinates $(x, 11 - 2x)$ $(x-3)^2 + (11-2x-5)^2 = (6\sqrt{5})^2$ $5x^2 - 30x - 135 = 0$ 5(x+3)(x-9) = 0 x = -3, x = 9 y = 17, y = -7	M1 M1* M1dep A1 A1 [6]	Attempt to find equation of l with gradient -2 $(x-3)^2 + (y-5)^2 = (6\sqrt{5})^2$ o.e. seen Attempts to solve the equations simultaneously to get a quadratic Correct method to solve their quadratic Both x values Both y values	e.g. by substitution as shown SC If A0 A0, one correct pair of values from correct factorisation www B1	
		Alternative method: Use of $(1, 2, \sqrt{5})$ triangle with -ve gradient M1 Scaling to $6\sqrt{5}$ M1 (3, 5) + (6, -12) M1 (9, -7) A1 (3, 5) - (6, -12) M1 (-3, 17) A1		 SC Spotted solutions Each correct pair www B1 (May also earn first two Ms as in main scheme)* -1 for one or two extra incorrect solutions -2 for three or more extra incorrect solutions Checks solutions and justifies only two solutions * NB – First M1 may also be awarded for establ solution(s) is – 2 	s B2 ishing gradient between (3,5) and their	

4721

)uestio	n	Answer	Marks	Guidan	Guidance		
9	(i)		(x-3)(x+4) = 0 x = 3 or x = -4	M1 A1 B1 B1 B1	Correct method to find roots Correct roots Negative quadratic curve <i>y</i> intercept (0, 12) Good curve, with correct roots 3 and -4 indicated and max point in 2 nd quadrant	i.e. max at (0, 12) B0 Curve must go below <i>x</i> -axis for final mark		
				[5]				
9	(ii)		-4 < <i>x</i> < 3	M1 A1 [2]	Correct method to solve quadratic inequality Allow \leq for the method mark but not the accuracy mark	their lower root $< x <$ their higher root Allow " $x > -4, x < 3$ " Allow " $x > -4$ and $x < 3$ " Do not allow " $x > -4$ or $x < 3$ "		
9	(iii)		y = 4 - 3x 12 - x - x ² = 4 - 3x	M1	substitute for x/y or attempt to get an equation in 1 variable only	e.g. for first mark $3x + 12 - x - x^2 = 4$, or $y = 12 - \left(\frac{4-y}{3}\right) - \left(\frac{4-y}{3}\right)^2$		
			$ \begin{aligned} x^2 - 2x - 8 &= 0 \\ (x - 4)(x + 2) &= 0 \\ x &= 4 \text{ or } x = -2 \\ y &= -8 \text{ or } y = 10 \end{aligned} $	A1 M1 A1 A1 [5]	obtain correct 3 term quadratic correct method to solve 3 term quadratic	(this leads to $y^2 - 2y - 80 = 0$). Condone poor algebra for this mark. SC If A0 A0, give B1 for one correct pair of values spotted or from correct factorisation www		

Question		on	Answer	Marks	Guidance		
10	(i)		$(x+2)^2 + (y-4)^2 = 25$	M1	$(x+2)^2$ and $(y-4)^2$ seen (or implied by	Alternative markscheme for f, g, c	
					$x^2 + 4x + y^2 - 8y)$	method:	
			$x^2 + 4x + 4 + y^2 - 8y + 16 - 25 = 0$	M1	$(x \pm 2)^2 + (y \pm 4)^2 = 25$	$x^{2} + 4x + y^{2} - 8y$ B1	
			$x^2 + y^2 + 4x - 8y - 5 = 0$	A1	Correct equation in correct form (terms can	$c = 2^2 + (\pm 4)^2 - 25$ M1	
				[2]	be in any order but must have "=0")	Correct equation in correct form A1	
				[3]			
10	(ii)		gradient of radius = $\frac{8-4}{-5+2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ (3/4 substitutions correct)		
			$= -\frac{4}{3}$	A1	Allow $\frac{4}{-3}$		
			gradient of tangent = $\frac{3}{4}$	B1FT			
			$y-8=\frac{3}{4}(x+5)$	M1	correct equation of straight line through $(-5, 8)$, any non-zero gradient		
			3x - 4y + 47 = 0	A1	Shows rearrangement to given equation AG		
		 	Alternative by rearrangement	[5]	CWO throughout for A1	Alternative markashama for implicit	
			Alternative by rearrangement		Alternative for equating given fine to circle	differentiation:	
			Gradient of radius $= \frac{8-4}{-4} = \frac{-4}{-4}$ M1* A1		Substitute for x/y or attempt to get an	M1 Attempt at implicit diff as	
			Gradient of radius $-\frac{1}{-5+2} - \frac{1}{3}$ M1* A1		equation in 1 variable only M1 $k(x^2 + 10x + 25) = 0$ or $k(y^2 - 16y + 64) = 0$ A1	evidenced by $2y \frac{dy}{dx}$ term	
			Attempts to rearrange equation of line to find		Correct method to solve quadratic M1	dv dv	
			gradient of line = $\frac{3}{4}$ M1dep		x = -5, $y = 8$ found A1	A1ft $2x + 2y - 4 - 8 - 9 = 0$ ft from	
			Multiply gradients to get -1 B1		States one root implies tangent BI	their equation in (i)	
			Check (-5, 8) lies on line B1 (dep on both M1s)				
						A1 Substitution of (-5, 8) to obtain $\frac{3}{4}$	
						then final 2 marks as main scheme	

Question		n	Answer	Marks	Guidan	Guidance		
10	(iii)		$(3 \times 3) - (4 \times 14) + 47 = 0$	B1	Sufficient correct working to verify	Alt: showing line joining (-5, 8) to (3,		
					statement e.g. verifying co-ordinate as shown	14) has same gradient etc.		
				[1]				
10	(iv)		$\sqrt{(3 - 5)^2 + (14 - 8)^2}$ = 10 Area of triangle = $\frac{1}{2} \times 10 \times 5$ = 25	M1 A1 M1 A1	Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for <i>TP</i> Must use their <i>TP</i> and their <i>CP</i>	<u>Alternative method:</u> Attempt to find area of enclosing rectangle and subtract areas of other three triangles M1 * Correct use area of triangle formula M1 dep All four values correct A1 Final answer correct A1 (Use the same principle for any		